Iranian Journal of Mathematical Sciences and Informatics Vol. 5, No. 1 (2010), pp. 19-26 DOI: 10.7508/ijmsi.2010.01.003

The Dual of a Strongly Prime Ideal

Reza Jahani-Nezhad

Department of Mathematics, Faculty of Science University of Kashan, Kashan, Iran

E-mail: jahanian@kashanu.ac.ir

ABSTRACT. Let R be a commutative integral domain with quotient field K and let P be a nonzero strongly prime ideal of R. We give several characterizations of such ideals. It is shown that (P : P) is a valuation domain with the unique maximal ideal P. We also study when P^{-1} is a ring. In fact, it is proved that $P^{-1} = (P : P)$ if and only if P is not invertible. Furthermore, if P is invertible, then R = (P : P) and P is a principal ideal of R.

Keywords: Strongly prime ideal, Divided ideal, Valuation domain.

2000 Mathematics subject classification: 13B22, 13B30, 13F30, 13G05.

1. INTRODUCTION

In this paper, we consider a commutative integral domain R in which a nonzero prime ideal P has the property that whenever P contains the product xy of two elements of the quotient field of R, then $x \in P$ or $y \in P$. Such prime ideals are called strongly prime ideal. In the second section of the paper, several characterizations of strongly prime ideals are given. The third section is concluded with a study of the dual of the strongly prime ideals of R.

Throughout this paper, R will be a commutative integral domain, K will denote its quotient field and I will be a nonzero ideal of R. The R-submodule

This work is partially supported by the research council of the University of Kashan Received 20 October 2009; Accepted 10 February 2010

 $[\]textcircled{C}2010$ Academic Center for Education, Culture and Research TMU

¹⁹

J of K is called a fractional ideal if there exists an element $a \in R$ such that $aJ \subseteq R$. For a nonzero fractional ideal J of R, the fractional ideal $(R:J) = \{x \in K \mid xJ \subseteq R\}$ is called the dual of J and is denoted by J^{-1} . In [8], Huckaba and Papick studied the question of when I^{-1} is a ring, and this question has received further attention in [1-4] and [6,7].

We note that while (I : I) is always an overring of R, I^{-1} need not be a ring at all. In fact, (I : I) is the largest overring of R in which I is still an ideal. Clearly $(I : I) \subseteq I^{-1}$, and if we have equality, then I^{-1} is a ring. Example 3.1 of [1] shows that I^{-1} may be a ring strictly containing (I : I). Our purpose here is to study P^{-1} , where P is a strongly prime ideal of R. We start by recalling the following results proved in [7] and [8].

Proposition 1.1. (See [8; Lemma 2.0]) If I is a proper invertible ideal of R, then I^{-1} is not a subring of K.

Proposition 1.2. (See [8; Proposition 2.3]) Let $0 \neq P$ be a prime ideal of R. Then P^{-1} is a subring of K if and only if $P^{-1} = (P : P)$.

Proposition 1.3. (See [8; Proposition 3.5]) Let I be an ideal of a valuation domain R. Then I^{-1} is a subring of K if and only if I is a noninvertible prime ideal.

Proposition 1.4. (See [7; Proposition 2.1]) Let I be a nonzero ideal of R for which I^{-1} is a ring. Then P^{-1} is a ring for each minimal prime ideal of I.

2. Strongly prime ideals

A prime ideal P of R is said to be *strongly prime*, if whenever $xy \in P$ for $x, y \in K$, then either $x \in P$ or $y \in P$. Strongly prime ideals were introduced by Hedstrom and Houston in [5], in their study of pseudo-valuation domains. In this section we give several characterizations and properties of such ideals.

Proposition 2.1. Let R be an integral domain and P be a prime ideal of R. The following statements are equivalent:

- 1. P is a strongly prime ideal of R.
- 2. For each element $x \in K \setminus P$, $x^{-1}P \subseteq P$.
- 3. For every element $a \in R$, aP is comparable to every principal ideal of R.
- 4. For every element $a \in R$, aP is comparable to every ideal of R.
- 5. $P \subset Rx$, for every $x \in K \setminus P$.
- 6. If $P \subset Rx$ and $P \subset Ry$, for $x, y \in K$, then $P \subset Rxy$.

Proof. $1 \Rightarrow 2$. We assume that $x \in K \setminus P$. Thus $x(x^{-1}P) = (xx^{-1})P = P$. Since P is strongly prime and $x \notin P$, we have $x^{-1}P \subseteq P$.

2 \Rightarrow **3.** Let $0 \neq a \in R$. For every element $x \in R$, if $\frac{x}{a} \in P$, then $x \in aP$ and so $Rx \subseteq aP$. If $\frac{x}{a} \notin P$, then $\frac{a}{x}P = (\frac{x}{a})^{-1}P \subseteq P$, by assumption. Hence $aP \subseteq Px \subseteq Rx$.

3 \Rightarrow **4.** Let *I* be an ideal of *R* and *a* \in *R*. If *I* $\not\subseteq$ *aP*, then there exists an element *x* \in *I* such that *x* \notin *aP*. Thus *aP* \subseteq *Rx* \subseteq *I*, by 3.

 $4 \Rightarrow 5$. Let $x \in K \setminus P$. Thus $x = \frac{a}{b}$, for some $a, b \in R$. If $bP \not\subseteq Ra$, then $Ra \subseteq bP$, by 4. Hence $x = \frac{a}{b} \in R\frac{a}{b} \subseteq P$, a contradiction. Therefore $bP \subseteq Ra$ and so $P \subseteq R\frac{a}{b} = Rx$. It is clear that $P \neq Rx$.

5 \Rightarrow **6.** Let $P \subset Rx$ and $P \subset Ry$, for some $x, y \in K$. If $xy \in P$, then $xy \in Ry$ and so xy = ry, for some $r \in R$. Hence $x = r \in R$. Similarly, we can show that $y \in R$. Since P is prime ideal and $xy \in P$, then $x \in P$ or $y \in P$. This is a contradiction. Therefore $xy \notin P$ and consequently $P \subset Rxy$, by assumption. **6** \Rightarrow **1.** It is obvious. \Box

It is clear that if P is a strongly prime ideal of R, then P is a strongly prime ideal of (P : P). It follows from Proposition 2.1 that, P is a strongly prime ideal of R if and only if $x^{-1}P \subseteq P$, for every element $x \in K \setminus P$. Therefore $x^{-1} \in (P : P)$, for each $x \in K \setminus P$, and so we have:

Corollary 2.2. Let R be an integral domain and P be a strongly prime ideal of R. Then (P : P) is a valuation domain with maximal ideal P. \Box

Corollary 2.3. Every prime ideal contained in a strongly prime ideal of R is strongly prime. \Box

Corollary 2.4. Let R be an integral domain and P be a nonzero strongly prime ideal of R. Then we have:

- 1. For every element $x \in R \setminus P$, P = xP.
- 2. If S is a multiplicatively closed subset of R and $P \cap S = \emptyset$, then P is an ideal of R_S and $PR_S = P$.

Proof. 1. Let $x \in R \setminus P$. Then $P \subset Rx$, by 5 of Proposition 2.1. Thus for each element $a \in P$, there exists $r \in R$ such that $rx = a \in P$ and so $r \in P$. Hence $P \subseteq xP \subseteq P$. Therefore P = xP. **2.** Now, we assume that $\frac{a}{s} \in PR_S$, then $a \in P$ and so a = rs, for some $r \in P$.

Therefore $\frac{a}{s} = \frac{rs}{s} = r \in P$. \Box

Definition 2.5. A proper ideal I of R is called a divided ideal, if it is comparable to every ideal of R.

We note that every strongly prime ideal of R is divided, by 4 of Proposition 2.1. Therefore we can conclude

Corollary 2.6. Let R be an integral domain and P be a strongly prime ideal of R. Then

- 1. $P \subseteq J(R)$, where J(R) is the Jacobson radical of R.
- 2. If P is a minimal prime ideal of the ideal I of R, then $\sqrt{I} = P$. Hence P is the unique minimal prime ideal of I. \Box

Now, we give another characterization of a strongly prime ideal in terms of properties of valuation domains. Before stating the next Proposition, we recall a result about valuation domains. The set of all ideals of a valuation domain are linearly ordered with respect to inclusion. Corollary 2.2 concludes the following:

Proposition 2.7. Let R be an integral domain and P be an ideal of R. The following statements are equivalent:

- 1. P is a strongly prime ideal of R.
- 2. (P:P) is a valuation domain with maximal ideal P.
- 3. P is a prime ideal of (P : P) and the ideals of (P : P) are linearly ordered.
- 4. *P* is a prime ideal of (P : P) and every principal ideal of (P : P) is a divided ideal.
- 5. There exists a valuation domain T containing R such that P is a prime ideal of T. □

The following is an example of a prime ideal P of R such that (P : P) is a valuation domain, but P is not a prime ideal of (P : P). Therefore P is not a strongly prime ideal of R.

Example 2.8 Let $R = Q[[x^2, x^3]]$. Then R is a local ring with maximal ideal $P = \langle x^2, x^3 \rangle$. It is clear that $P^{-1} = (P : P) = Q[[x]]$ is a valuation domain, but P is not a prime ideal of (P : P), because $x \notin P$ and $x^2 \in P$.

We can now prove a result which shows that an invertible strongly prime ideal is a principal maximal ideal.

Theorem 2.9. Let R be an integral domain and P be a nonzero strongly prime ideal of R. If P is invertible, then R is a valuation domain with maximal ideal P. Furthermore, P is a principal ideal.

Proof. Since P is invertible, $PP^{-1} = R$ and so $1 = \sum_{i=1}^{n} a_i b_i$, for some elements a_1, a_2, \dots, a_n of P and b_1, b_2, \dots, b_n of P^{-1} . For every element $a \in R \setminus P$, we have P = aP, by 1 of Corollary 2.4. Thus, for each i, $(1 \le i \le n)$, there exists an element $s_i \in P$ such that $as_i = a_i$. Hence,

$$1 = \sum_{i=1}^{n} a_i b_i = \sum_{i=1}^{n} a s_i b_i = a(\sum_{i=1}^{n} s_i b_i).$$

Since $s_i b_i \in PP^{-1} = R$, for all *i*, *a* is an unit of *R*. Therefore *P* is the unique maximal ideal of *R* and consequently *R* is quasi-local.

For every element $x \in K \setminus R$, $x^{-1}P \subseteq P$, by 2 of Proposition 2.1, and so $x^{-1}a_i \in P$, for all *i*. Thus $x^{-1}a_ib_i \in PP^{-1} = R$, for all *i*. Hence $x^{-1} = x^{-1}(\sum_{i=1}^n a_ib_i) = \sum_{i=1}^n x^{-1}a_ib_i \in R$. Therefore *R* is a valuation domain and by Corollary 2.2, R = (P : P). On the other hand, since *P* is an invertible ideal of a quasi-local ring, *P* is a principal ideal. \Box

3. DUAL OF A STRONGLY PRIME IDEAL

In general, a prime ideal P of R need not be a prime ideal of (P : P), (see [8; Example 2.5]). In [8; Proposition 2.4] it is proved that if P^{-1} is a ring, for a prime ideal P which is not divisorial, then P is a prime ideal of P^{-1} . In this section, we show that if $0 \neq P$ is a strongly prime ideal of R which is not maximal, then $P^{-1} = (P : P) = R_P$ is a valuation domain with the maximal ideal P.

Theorem 3.1. Let R be an integral domain and M be a strongly prime ideal of R. For every prime ideal P, if $P \subset M$, then $(P : P) = R_P$ is a valuation domain with maximal ideal P. Furthermore, if R is Noetherian, then $\dim R_P \leq 1$.

Proof. By Corollary 2.3, P is a strongly prime ideal and so T = (P : P) is a valuation domain with the unique maximal ideal P, by Corollary 2.2. We now prove that $T = R_P$. Let $x \in R \setminus P$. Then $x^{-1} \in T$, by 2 of Proposition 2.1, and consequently $R_P \subseteq T$.

Conversely, let $x \in T$. If $x \in R$, then $x \in R_P$ and if $x \notin R$, then $x^{-1} \in T \setminus P$. Now, if $x^{-1} \in R$, then $x = \frac{1}{x^{-1}} \in R_P$. If $x^{-1} \notin R$, consider an element $s \in M \setminus P$, we have $(sx)x^{-1} = s \in M$. Since M is a strongly prime ideal and $x^{-1} \notin M$, $a = sx \in M \subseteq R$. Therefore $x = \frac{a}{s} \in R_P$ and consequently $(P:P) = R_P$. Now, if R is Noetherian, then P is a principal ideal of R_P , by [9; Theorem 5.9], and so $dim R_P = htP \leq 1$, by Krull's principal ideal Theorem [10; Theorem 15.2]. \Box

The next result is a generalization of Proposition 1.3 and [8; Corollary 3.6]. Example 2.8 shows that P^{-1} may be a valuation domain, but P is not a strongly prime ideal.

Theorem 3.2. If P is a nonzero strongly prime ideal of R, then P^{-1} is a valuation domain if and only if P is a noninvertible ideal. Furthermore, in this case, we have $P^{-1} = (P : P)$ and P is the unique maximal ideal of P^{-1} .

Proof. If P^{-1} is a ring, then P is not invertible, by Proposition 1.1. We now assume that P is not invertible. By Corollary 2.2, it is enough to prove that $PP^{-1} \subseteq P$. Let $a \in P$ and $b \in P^{-1}$. If $ab \notin P$, then $(ab)^{-1} \in (P : P)$, by 2 of Proposition 2.1. Hence $b^{-1} = a(ab)^{-1} \in P$, and so $1 = b^{-1}b \in PP^{-1}$. Therefore $PP^{-1} = R$. This contradicts the fact that P is not invertible. \Box

Corollary 3.3. Let P be a nonzero strongly prime ideal of R. If P is a maximal ideal of R, then either P is an invertible ideal or P^{-1} is a ring. \Box

An integral domain R is called a *pseudo-valuation domain*, if each prime ideal of R is strongly prime. Obviously, every valuation domain is a pseudovaluation domain, but there exists a pseudo-valuation domain which is not a valuation domain, (see [5; Example 2.1 and Example 3.6]). By 4 of Proposition 2.1, it is clear that every pseudo-valuation domain R is quasi-local and so each invertible ideal of R is principal. Therefore, Theorem 3.1 and Corollary 3.2 imply that

Corollary 3.4. Let R be a pseudo-valuation domain with the unique maximal ideal M. Then for every nonzero prime ideal $P \neq M$ of R, $P^{-1} = (P : P) = R_P$ is a valuation domain with maximal ideal P. Furthermore, if M is not principal, then M^{-1} is a ring and $M^{-1} = (M : M)$. \Box

Proposition 3.5. Let R be an integral domain and P be a nonzero strongly prime ideal of R. If $Q = \bigcap_{n=1}^{\infty} P^n$, then

- 1. Q is a strongly prime ideal of R.
- 2. If $P \neq P^2$, then either $Q = \{0\}$ or Q^{-1} is a valuation domain.

Proof. 1. It is clear that Q is an ideal of R. Let T = (P : P). By Corollary 2.2, T is a valuation domain with maximal ideal P. Thus for every $a \in T$, $aP \subseteq P$ and so $aP^n \subseteq P^n$, for each integer n. Hence P^n is an ideal of T, for all n, and

so Q is an ideal of T. Moreover, P^n is a divided ideal of T. Now we assume that $x, y \in T$ and $xy \in Q$. If $x \notin Q$, then $x \notin P^n$ for some integer n. Thus $P^n \subset Tx$. Hence for each integer m, we have

$$xy \in Txy \subseteq Q \subseteq P^{m+n} = P^m P^n \subseteq P^m x$$

and so $y \in P^m$. Therefore $y \in Q$ and so Q is a prime ideal of T. Hence Q is a prime ideal of R. Since $Q \subseteq P$ and P is a strongly prime ideal of R, Q is a strongly prime ideal of R, by Corollary 2.3.

2. Let $Q \neq \{0\}$. Since $P \neq P^2$, we have $Q \subset P$. Then Q is not maximal and so Q is not invertible, by Theorem 2.9. Therefore Q^{-1} is a valuation domain, by Theorem 3.2. \Box

Theorem 3.6. Let R be an integral domain and P be a minimal prime ideal of the ideal I of R. Suppose also that P is a strongly prime ideal of R. Then we have:

1. $(I : I) \subseteq (P : P)$. 2. If for each $x \in I^{-1}$, $x^2 \in I^{-1}$, then $I^{-1} = (P : I)$. 3. If I^{-1} is a ring, then $I^{-1} = P^{-1} = (P : P) = (P : I)$.

Proof. 1. Let $a \in (I : I)$ and $b \in P$. Then by 2 of Corollary 2.6, $b^n \in I$, for some integer n, also, we have $a^n \in (I : I)$. Hence $(ab)^n = a^n b^n \in I \subseteq P$. Since P is a strongly prime ideal, $ab \in P$ and so $aP \subseteq P$. Therefore $(I : I) \subseteq (P : P)$. **2.** It is clear that $(P : I) \subseteq (R : I) = I^{-1}$. We now assume that $a \in I^{-1}$. Thus $a^2 \in I^{-1}$ and so $a^2I \subseteq R$. For every element $x \in I$, we have $a^2x \in R$. Hence $(ax)^2 = a^2x^2 = (a^2x)x \in I \subseteq P$, and consequently $ax \in P$. Therefore $aI \subseteq P$. Then $a \in (P : I)$.

3. Since I^{-1} is a ring, P^{-1} also is a ring, by Proposition 1.4. Then $P^{-1} = (P:P)$, by Proposition 1.2. Moreover, by 2, $I^{-1} = (P:I)$. Now, if $a \in (P:I)$ then $a^m \in (P:I)$, for all m, because I^{-1} is a ring, and so $a^m I \subseteq P$, for each m. For every $b \in P$, we have $b^n \in I$, for some integer n. Hence $(ab)^n = a^n b^n \in a^n I \subseteq P$ and consequently $ab \in P$, because P is a strongly prime ideal. Thus $a \in (P:P)$. Therefore $I^{-1} = (P:I) \subseteq (P:P) = P^{-1}$. On the other hand, $(P:P) \subseteq (P:I)$, because $I \subseteq P$. \Box

We recall that, every ideal of a Dedekind domain is an invertible ideal. Therefore, the next result follows from Theorem 2.8 and Corollary 2.3.

Proposition 3.7. Let R be a Dedekind domain and P a nonzero strongly prime ideal of R. Then R is a valuation domain with the unique prime ideal P. \Box

Acknowledgement. I would like to thank the referee for the valuable suggestion.

Reza Jahani-Nezhad

References

- D. F. Anderson, When the dual of an ideal is a ring?, Houston J. Math., 9 (3) (1983), 325-332.
- [2] M. Fontana, J. A. Huchaba and I. J. Papick, Divisorial ideals in Prüfer domains, Canad. Math. Bull., 27 (1984), 324-328.
- [3] M. Fontana, J. A. Huchaba and I. J. Papick, Some properties of divisorial prime ideals in Prüfer domains, J. Pure Appl. Algebra 39 (1986), 95-103.
- [4] M. Fontana, J. Huchaba and I. Papick, Domains satisfying the trace property, J. Algebra 107 (1987), 169-182.
- [5] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, *Pacific J. Math.*, 75 (1) (1978), 137-147.
- [6] W. Heinzer and I. Papick, The radical trace property, J. Algebra, 112 (1988), 110-121.
- [7] E. Houston, S. Kabbaj, T. Lucas, and A. Mimouni, When is the dual of an ideal a ring?, J. Algebra, 225 (2000), 429-450.
- [8] J. A. Huckaba and I. J. Papick, When the dual of an ideal is ring?, Manuscripta Math. 37 (1982), 67-85.
- [9] M. D. Larsen and P. J. MacCarthy, Multiplicative theory of ideals, Academic press, 1971.
- [10] R.Y. Sharp, Steps in commutative algebra, Cambridge university press, 1990.