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Abstract. Let R be a commutative integral domain with quotient field

K and let P be a nonzero strongly prime ideal of R. We give several

characterizations of such ideals. It is shown that (P : P ) is a valuation

domain with the unique maximal ideal P . We also study when P−1 is

a ring. In fact, it is proved that P−1 = (P : P ) if and only if P is not

invertible. Furthermore, if P is invertible, then R = (P : P ) and P is a

principal ideal of R.
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1. Introduction

In this paper, we consider a commutative integral domain R in which a
nonzero prime ideal P has the property that whenever P contains the product
xy of two elements of the quotient field of R, then x ∈ P or y ∈ P . Such
prime ideals are called strongly prime ideal. In the second section of the paper,
several characterizations of strongly prime ideals are given. The third section
is concluded with a study of the dual of the strongly prime ideals of R.

Throughout this paper, R will be a commutative integral domain, K will
denote its quotient field and I will be a nonzero ideal of R. The R-submodule
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J of K is called a fractional ideal if there exists an element a ∈ R such that
aJ ⊆ R. For a nonzero fractional ideal J of R, the fractional ideal
(R : J) = { x ∈ K | xJ ⊆ R } is called the dual of J and is denoted by
J−1. In [8], Huckaba and Papick studied the question of when I−1 is a ring,
and this question has received further attention in [1-4] and [6,7].

We note that while (I : I) is always an overring of R, I−1 need not be a ring
at all. In fact, (I : I) is the largest overring of R in which I is still an ideal.
Clearly (I : I) ⊆ I−1, and if we have equality, then I−1 is a ring. Example 3.1
of [1] shows that I−1 may be a ring strictly containing (I : I). Our purpose
here is to study P−1, where P is a strongly prime ideal of R. We start by
recalling the following results proved in [7] and [8].

Proposition 1.1. ( See [8; Lemma 2.0] ) If I is a proper invertible ideal of R,
then I−1 is not a subring of K.

Proposition 1.2. ( See [8; Proposition 2.3] ) Let 0 �= P be a prime ideal of R.
Then P−1 is a subring of K if and only if P−1 = (P : P ).

Proposition 1.3. ( See [8; Proposition 3.5] ) Let I be an ideal of a valuation
domain R. Then I−1 is a subring of K if and only if I is a noninvertible prime
ideal.

Proposition 1.4. ( See [7; Proposition 2.1] ) Let I be a nonzero ideal of R for
which I−1 is a ring. Then P−1 is a ring for each minimal prime ideal of I.

2. Strongly prime ideals

A prime ideal P of R is said to be strongly prime, if whenever xy ∈ P for
x, y ∈ K, then either x ∈ P or y ∈ P . Strongly prime ideals were introduced
by Hedstrom and Houston in [5], in their study of pseudo-valuation domains.
In this section we give several characterizations and properties of such ideals.

Proposition 2.1. Let R be an integral domain and P be a prime ideal of R.
The following statements are equivalent:

1. P is a strongly prime ideal of R.
2. For each element x ∈ K \ P , x−1P ⊆ P .
3. For every element a ∈ R, aP is comparable to every principal ideal of

R.
4. For every element a ∈ R, aP is comparable to every ideal of R.
5. P ⊂ Rx, for every x ∈ K \ P .
6. If P ⊂ Rx and P ⊂ Ry, for x, y ∈ K, then P ⊂ Rxy.
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Proof. 1 ⇒ 2. We assume that x ∈ K \ P . Thus x(x−1P ) = (xx−1)P = P .
Since P is strongly prime and x �∈ P , we have x−1P ⊆ P .
2 ⇒ 3. Let 0 �= a ∈ R. For every element x ∈ R, if

x

a
∈ P , then x ∈ aP

and so Rx ⊆ aP . If
x

a
�∈ P , then

a

x
P = (

x

a
)−1P ⊆ P , by assumption. Hence

aP ⊆ Px ⊆ Rx.
3 ⇒ 4. Let I be an ideal of R and a ∈ R. If I �⊆ aP , then there exists an
element x ∈ I such that x �∈ aP . Thus aP ⊆ Rx ⊆ I, by 3.
4 ⇒ 5. Let x ∈ K \ P . Thus x =

a

b
, for some a, b ∈ R. If bP �⊆ Ra, then

Ra ⊆ bP , by 4. Hence x =
a

b
∈ R

a

b
⊆ P , a contradiction. Therefore bP ⊆ Ra

and so P ⊆ R
a

b
= Rx. It is clear that P �= Rx.

5 ⇒ 6. Let P ⊂ Rx and P ⊂ Ry, for some x, y ∈ K. If xy ∈ P , then xy ∈ Ry

and so xy = ry, for some r ∈ R. Hence x = r ∈ R. Similarly, we can show
that y ∈ R. Since P is prime ideal and xy ∈ P , then x ∈ P or y ∈ P . This is a
contradiction. Therefore xy �∈ P and consequently P ⊂ Rxy, by assumption.
6 ⇒ 1. It is obvious. �

It is clear that if P is a strongly prime ideal of R, then P is a strongly prime
ideal of (P : P ). It follows from Proposition 2.1 that, P is a strongly prime
ideal of R if and only if x−1P ⊆ P , for every element x ∈ K \ P . Therefore
x−1 ∈ (P : P ), for each x ∈ K \ P , and so we have:

Corollary 2.2. Let R be an integral domain and P be a strongly prime ideal
of R. Then (P : P ) is a valuation domain with maximal ideal P . �

Corollary 2.3. Every prime ideal contained in a strongly prime ideal of R is
strongly prime. �

Corollary 2.4. Let R be an integral domain and P be a nonzero strongly prime
ideal of R. Then we have:

1. For every element x ∈ R \ P , P = xP .
2. If S is a multiplicatively closed subset of R and P ∩ S = Ø, then P is

an ideal of RS and PRS = P .

Proof. 1. Let x ∈ R \ P . Then P ⊂ Rx, by 5 of Proposition 2.1. Thus for
each element a ∈ P , there exists r ∈ R such that rx = a ∈ P and so r ∈ P .
Hence P ⊆ xP ⊆ P . Therefore P = xP .
2. Now, we assume that

a

s
∈ PRS , then a ∈ P and so a = rs, for some r ∈ P .

Therefore
a

s
=

rs

s
= r ∈ P . �
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Definition 2.5. A proper ideal I of R is called a divided ideal, if it is compa-
rable to every ideal of R.

We note that every strongly prime ideal of R is divided, by 4 of Proposition
2.1. Therefore we can conclude

Corollary 2.6. Let R be an integral domain and P be a strongly prime ideal
of R. Then

1. P ⊆ J(R), where J(R) is the Jacobson radical of R.
2. If P is a minimal prime ideal of the ideal I of R, then

√
I = P . Hence

P is the unique minimal prime ideal of I. �

Now, we give another characterization of a strongly prime ideal in terms
of properties of valuation domains. Before stating the next Proposition, we
recall a result about valuation domains. The set of all ideals of a valuation
domain are linearly ordered with respect to inclusion. Corollary 2.2 concludes
the following:

Proposition 2.7. Let R be an integral domain and P be an ideal of R. The
following statements are equivalent:

1. P is a strongly prime ideal of R.
2. (P : P ) is a valuation domain with maximal ideal P .
3. P is a prime ideal of (P : P ) and the ideals of (P : P ) are linearly

ordered.
4. P is a prime ideal of (P : P ) and every principal ideal of (P : P ) is a

divided ideal.
5. There exists a valuation domain T containing R such that P is a prime

ideal of T . �

The following is an example of a prime ideal P of R such that (P : P ) is a
valuation domain, but P is not a prime ideal of (P : P ). Therefore P is not a
strongly prime ideal of R.

Example 2.8 Let R = Q[[x2, x3]]. Then R is a local ring with maximal ideal
P =< x2, x3 >. It is clear that P−1 = (P : P ) = Q[[x]] is a valuation domain,
but P is not a prime ideal of (P : P ), because x �∈ P and x2 ∈ P .

We can now prove a result which shows that an invertible strongly prime
ideal is a principal maximal ideal.

Theorem 2.9. Let R be an integral domain and P be a nonzero strongly prime
ideal of R. If P is invertible, then R is a valuation domain with maximal ideal
P . Furthermore, P is a principal ideal.
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Proof. Since P is invertible, PP−1 = R and so 1 =
n∑

i=1

aibi, for some elements

a1, a2, · · · , an of P and b1, b2, · · · , bn of P−1. For every element a ∈ R \ P , we
have P = aP , by 1 of Corollary 2.4. Thus, for each i, (1 ≤ i ≤ n), there exists
an element si ∈ P such that asi = ai. Hence,

1 =
n∑

i=1

aibi =
n∑

i=1

asibi = a(
n∑

i=1

sibi).

Since sibi ∈ PP−1 = R, for all i, a is an unit of R. Therefore P is the unique
maximal ideal of R and consequently R is quasi-local.

For every element x ∈ K \ R, x−1P ⊆ P , by 2 of Proposition 2.1, and
so x−1ai ∈ P , for all i. Thus x−1aibi ∈ PP−1 = R, for all i. Hence

x−1 = x−1(
n∑

i=1

aibi) =
n∑

i=1

x−1aibi ∈ R. Therefore R is a valuation domain

and by Corollary 2.2, R = (P : P ). On the other hand, since P is an invertible
ideal of a quasi-local ring, P is a principal ideal. �

3. Dual of a strongly prime ideal

In general, a prime ideal P of R need not be a prime ideal of (P : P ), ( see
[8; Example 2.5] ). In [8; Proposition 2.4] it is proved that if P−1 is a ring,
for a prime ideal P which is not divisorial, then P is a prime ideal of P−1. In
this section, we show that if 0 �= P is a strongly prime ideal of R which is not
maximal, then P−1 = (P : P ) = RP is a valuation domain with the maximal
ideal P .

Theorem 3.1. Let R be an integral domain and M be a strongly prime ideal
of R. For every prime ideal P , if P ⊂ M , then (P : P ) = RP is a valuation
domain with maximal ideal P . Furthermore, if R is Noetherian, then dimRP ≤
1.

Proof. By Corollary 2.3, P is a strongly prime ideal and so T = (P : P ) is a
valuation domain with the unique maximal ideal P , by Corollary 2.2. We now
prove that T = RP . Let x ∈ R \ P . Then x−1 ∈ T , by 2 of Proposition 2.1,
and consequently RP ⊆ T .

Conversely, let x ∈ T . If x ∈ R, then x ∈ RP and if x �∈ R, then x−1 ∈ T \P .

Now, if x−1 ∈ R, then x =
1

x−1
∈ RP . If x−1 �∈ R, consider an element

s ∈ M \ P , we have (sx)x−1 = s ∈ M . Since M is a strongly prime ideal
and x−1 �∈ M , a = sx ∈ M ⊆ R. Therefore x =

a

s
∈ RP and consequently
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(P : P ) = RP . Now, if R is Noetherian, then P is a principal ideal of RP , by
[9; Theorem 5.9], and so dimRP = htP ≤ 1, by Krull’s principal ideal Theorem
[10; Theorem 15.2]. �

The next result is a generalization of Proposition 1.3 and [8; Corollary 3.6].
Example 2.8 shows that P−1 may be a valuation domain, but P is not a strongly
prime ideal.

Theorem 3.2. If P is a nonzero strongly prime ideal of R, then P−1 is a
valuation domain if and only if P is a noninvertible ideal. Furthermore, in this
case, we have P−1 = (P : P ) and P is the unique maximal ideal of P−1.

Proof. If P−1 is a ring, then P is not invertible, by Proposition 1.1. We now
assume that P is not invertible. By Corollary 2.2, it is enough to prove that
PP−1 ⊆ P . Let a ∈ P and b ∈ P−1. If ab �∈ P , then (ab)−1 ∈ (P : P ), by
2 of Proposition 2.1. Hence b−1 = a(ab)−1 ∈ P , and so 1 = b−1b ∈ PP−1.
Therefore PP−1 = R. This contradicts the fact that P is not invertible. �

Corollary 3.3. Let P be a nonzero strongly prime ideal of R. If P is a maxi-
mal ideal of R, then either P is an invertible ideal or P−1 is a ring. �

An integral domain R is called a pseudo-valuation domain, if each prime
ideal of R is strongly prime. Obviously, every valuation domain is a pseudo-
valuation domain, but there exists a pseudo-valuation domain which is not a
valuation domain, (see [5; Example 2.1 and Example 3.6]). By 4 of Proposition
2.1, it is clear that every pseudo-valuation domain R is quasi-local and so each
invertible ideal of R is principal. Therefore, Theorem 3.1 and Corollary 3.2
imply that

Corollary 3.4. Let R be a pseudo-valuation domain with the unique maximal
ideal M . Then for every nonzero prime ideal P �= M of R, P−1 = (P : P ) =
RP is a valuation domain with maximal ideal P . Furthermore, if M is not
principal, then M−1 is a ring and M−1 = (M : M). �

Proposition 3.5. Let R be an integral domain and P be a nonzero strongly

prime ideal of R. If Q =
∞⋂

n=1

Pn, then

1. Q is a strongly prime ideal of R.
2. If P �= P 2, then either Q = {0} or Q−1 is a valuation domain.

Proof. 1. It is clear that Q is an ideal of R. Let T = (P : P ). By Corollary 2.2,
T is a valuation domain with maximal ideal P . Thus for every a ∈ T , aP ⊆ P

and so aPn ⊆ Pn, for each integer n. Hence Pn is an ideal of T , for all n, and
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so Q is an ideal of T . Moreover, Pn is a divided ideal of T . Now we assume
that x, y ∈ T and xy ∈ Q. If x �∈ Q, then x �∈ Pn for some integer n. Thus
Pn ⊂ Tx. Hence for each integer m, we have

xy ∈ Txy ⊆ Q ⊆ Pm+n = PmPn ⊆ Pmx

and so y ∈ Pm. Therefore y ∈ Q and so Q is a prime ideal of T . Hence Q is
a prime ideal of R. Since Q ⊆ P and P is a strongly prime ideal of R, Q is a
strongly prime ideal of R, by Corollary 2.3.
2. Let Q �= {0}. Since P �= P 2, we have Q ⊂ P . Then Q is not maximal and
so Q is not invertible, by Theorem 2.9. Therefore Q−1 is a valuation domain,
by Theorem 3.2. �

Theorem 3.6. Let R be an integral domain and P be a minimal prime ideal
of the ideal I of R. Suppose also that P is a strongly prime ideal of R. Then
we have:

1. (I : I) ⊆ (P : P ).
2. If for each x ∈ I−1, x2 ∈ I−1, then I−1 = (P : I).
3. If I−1 is a ring, then I−1 = P−1 = (P : P ) = (P : I).

Proof. 1. Let a ∈ (I : I) and b ∈ P . Then by 2 of Corollary 2.6, bn ∈ I, for
some integer n, also, we have an ∈ (I : I). Hence (ab)n = anbn ∈ I ⊆ P . Since
P is a strongly prime ideal, ab ∈ P and so aP ⊆ P . Therefore (I : I) ⊆ (P : P ).
2. It is clear that (P : I) ⊆ (R : I) = I−1. We now assume that a ∈ I−1.
Thus a2 ∈ I−1 and so a2I ⊆ R. For every element x ∈ I, we have a2x ∈ R.
Hence (ax)2 = a2x2 = (a2x)x ∈ I ⊆ P , and consequently ax ∈ P . Therefore
aI ⊆ P . Then a ∈ (P : I).
3. Since I−1 is a ring, P−1 also is a ring, by Proposition 1.4. Then P−1 =
(P : P ), by Proposition 1.2. Moreover, by 2, I−1 = (P : I). Now, if a ∈ (P : I)
then am ∈ (P : I), for all m, because I−1 is a ring, and so amI ⊆ P ,
for each m. For every b ∈ P , we have bn ∈ I, for some integer n. Hence
(ab)n = anbn ∈ anI ⊆ P and consequently ab ∈ P , because P is a strongly
prime ideal. Thus a ∈ (P : P ). Therefore I−1 = (P : I) ⊆ (P : P ) = P−1. On
the other hand, (P : P ) ⊆ (P : I), because I ⊆ P . �

We recall that, every ideal of a Dedekind domain is an invertible ideal.
Therefore, the next result follows from Theorem 2.8 and Corollary 2.3.

Proposition 3.7. Let R be a Dedekind domain and P a nonzero strongly
prime ideal of R. Then R is a valuation domain with the unique prime ideal
P . �
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